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Recently we introduced a family of U�N� invariant random matrix ensembles which is characterized by a
parameter � describing logarithmic soft-confinement potentials V�H���ln H��1+�����0�. We showed that we
can study eigenvalue correlations of these “� ensembles” based on the numerical construction of the corre-
sponding orthogonal polynomials with respect to the weight function exp�−�ln x�1+��. In this work, we expand
our previous work and show that: �i� the eigenvalue density is given by a power law of the form ��x�
� �ln x��−1 /x and �ii� the two-level kernel has an anomalous structure, which is characteristic of the critical
ensembles. We further show that the anomalous part, or the so-called “ghost-correlation peak,” is controlled by
the parameter �; decreasing � increases the anomaly. We also identify the two-level kernel of the � ensembles
in the semiclassical regime, which can be written in a sinh-kernel form with more general argument that
reduces to that of the critical ensembles for �=1. Finally, we discuss the universality of the � ensembles, which
includes Wigner-Dyson universality ��→� limit�, the uncorrelated Poisson-type behavior ��→0 limit�, and a
critical behavior for all the intermediate ��0����� in the semiclassical regime. We also comment on the
implications of our results in the context of the localization-delocalization problems as well as the N depen-
dence of the two-level kernel of the fat-tail random matrices.
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I. INTRODUCTION

Random matrix theory �RMT� deals with the statistical
properties of eigenvalues and eigenvectors of random matri-
ces drawn from a certain probability measure. The theory
was successfully applied by Wigner1 in the 1950s to describe
the spectral properties of complex many-body nuclei where
the underlying Hamiltonians are so complicated that a useful
way to study the system turned out to be through a statistical
treatment of the Hamiltonians.2 Since then, RMT has been
applied to a wide variety of systems in diverse areas, includ-
ing, e.g., many-body atoms and nuclei, quantum chaos, me-
soscopic disordered conductors, two-dimensional quantum
gravity, conformal field theory, chiral phase transitions as
well as zeros of Riemann zeta function, scale-free networks,
biological networks, communication systems, and financial
markets.3,4 This broad range of applicability of RMT in
seemingly unrelated areas highlights the universal features of
the correlations of the eigenvalues in RMT. Within the clas-
sical Gaussian model pioneered by Wigner, these correla-
tions are known as the Wigner-Dyson �WD� statistics of the
Gaussian ensembles, which are qualitatively different from
the statistical features of completely uncorrelated eigenval-
ues given by the Poisson statistics.

In the past decades, many attempts have been made to
construct generalized random matrix ensembles that incorpo-
rate power-law or fat-tail distributions.5–7 The significance of
such generalization beyond the Gaussian ensembles is
mainly twofold. First of all, it is conceivable that the wide
applicability of classical or Gaussian RM models is closely
linked to the prevalence of normal or Gaussian distributions
in nature, a consequence of the central limit theorem.5 It has,
however, not been fully investigated if there is a counterpart
of the Gaussian ensemble as implied by the structure of the
generalized central limit theorem,5 comparing, e.g., the
Gaussian and the Lévy basins. Second, there have been ex-

panding interests in RMT applications to generic complex
systems such as financial markets, scale-free network, earth-
quakes etc.,4,8 that feature fat-tail noise but the relevance of
the classical RM models in these systems seems question-
able. This is because the Gaussian ensemble is based on the
assumption that the systems are characterized by Gaussian
noise, which is clearly not suitable for systems with fat-tail
noise, where the occurrence of extreme events are not as rare
as expected from normal distributions. So far, fat-tail distri-
butions in random matrix ensembles have been carefully in-
corporated in some limited cases and the calculation of the
correlation functions of eigenvalues have been carried out for
certain special cases.7 However, the question regarding the
universality of the correlations of the eigenvalues remains
unresolved. For Gaussian ensembles it is the well known
two-level sine kernel that establishes the universality of the
correlations in the properly scaled large N �matrix size� limit;
it is not clear if there exists a similar universal two-level
kernel for the power law or the fat-tail ensembles as well.

In fact, the suggestion of a novel universality beyond the
Gaussian ensembles comes from the study of the Anderson
transition in the disordered electronic systems.9 In these sys-
tems, the Gaussian ensemble is only relevant in the metallic
regime where all the eigenstates are extended across the en-
tire system and correlations of the corresponding eigenvalues
are well described by the WD statistics. As the disorder is
made strong enough, the eigenstates become localized and
thus the eigenvalues become uncorrelated. Especially at the
delocalization-localization transition, it has been established
that the correlations of the eigenvectors exhibit novel
features9 such as multifractality and the correlations of the
eigenvalues lead to a level compressibility that is intermedi-
ate between WD and Poisson statistics. Similarly in the stud-
ies of quantum chaos, energy level statistics of systems that
are intermediate between chaotic and regular states also re-
quire generalization beyond WD and Poisson statistics.10 In
these contexts, extensive studies have been carried out to
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construct a parametric generalization of RM models that
cross over from WD to Poisson9,10 as a function of the pa-
rameter. Some of these generalizations indeed capture the
essential features of the critical statistics, among which the
family of q-RMEs �Refs. 11 and 12� provides a particularly
valuable insight. Within the common framework of rotation-
ally invariant RM models13 the q-RMEs show how the uni-
versality of the Gaussian ensemble characterized by the well-
known sine kernel breaks down and eventually gives rise to
a different kind of universality for the critical ensembles,
characterized by a one-parameter two-level sinh kernel. In
particular, the rotationally invariant RM models are charac-
terized by a “confining potential” which defines the weight
function of a set of orthogonal polynomials; the key differ-
ence between the Gaussian and the critical ensembles comes
from the fact that the corresponding orthogonal polynomials,
namely classical vs q-orthogonal polynomials, respectively,
possess qualitatively different asymptotic properties.14,15

In the motivation to investigate the universality associated
with fat-tail or power-law RMEs, we introduced a family of
U�N� invariant random matrix ensembles characterized by an
asymptotic logarithmic potential V�H�=A�ln x�1+� with
��0,16 which we will refer to as “� ensembles.”17 The rea-
son for such a choice of the potential is based on the
following few observations. First, it is known that for
V�H�� �ln H�2 corresponding to �=1 �the critical ensemble�,
the eigenvalue spectrum is given by inverse power-law dis-
tribution, as known by the mean-field theoretic approach.18

Second, for V�H��N ln H corresponding to the �→0 limit
with the constant A being order of N �free Lévy matrices�,
the spectral density is given by the fat-tail distributions.
Third, in the limit �	1, it is expected that the confinement
potential may grow sufficiently strong, thereby approaching
the Gaussian limit. The fact that such a parametric generali-
zation connects various existing RM models is interesting
since the model allows us to explore any possible novel uni-
versality associated with fat-tail RMEs and with logarithmic
soft-confinement potentials within the rotationally invariant
RMT framework.

It is well known from the mean-field theoretic approach18

that RMEs with logarithmic soft confinement are character-
istically different from those with strong confinement poten-
tials given by V�x�= �x�
 ,
�1. The reason is that for the
soft-confinement potential, the eigenvalue density does not
depend on N and has a nontrivial functional form, which is
not translationally invariant. It means that the required un-
folding is nontrivial. In fact, the nontrivial unfolding proce-
dure give rise to the deviation from the WD statistics. In the
following, we will show by studying the two-level kernel
that the � ensembles exhibits interesting deviations from WD
statistics. Especially, the presence of the anomalous compo-
nent in the two-level kernel is a common characteristic of all
the logarithmic confinement potentials.

The paper is organized as follows. In Sec II we provide a
brief review of the orthogonal polynomial method and in Sec
III we discuss the model ensemble. In Sec IV we will show
the results and finally in Sec V we will discuss the results
with concluding remarks.

II. ORTHOGONAL POLYNOMIAL METHOD

We consider the set of U�N� invariant Hermitian matrices
H with the following probability measure:

PN�H�dH � e−tr�V�H��dH , �1�

where the confining potential V�x� is a suitably increasing
function of x, tr is the matrix trace, and dH the Haar mea-
sure. In the eigenvector basis, the joint probability distribu-
tion of the eigenvalues �xi	�i=1,2 , . . . ,N� of the matrices can
be written in the form13

PN��xi	� � 

i�j

N

�xi − xj�2

i=1

N

e−V�xi�. �2�

Here the factor 
�xi−xj� is the Vandermonde determinant.
Given a set of �monic� polynomials pn�x� that are orthogonal
with respect to the weight function w�x�=e−V�x�, i.e.,

�
−�

�

e−V�x�pn�x�pm�x�dx = �mn �3�

the n-level correlation of eigenvalues Rn�x1 ,x2 , . . . . ,xn� can
be written in a compact form in terms of the two-level kernel
in the following manner:

Rn�x1,x2, . . . . ,xn� � det�KN�xi,xj���i,j=0,. . .,n	. �4�

Here the two-level kernel KN�x ,y� is defined as

KN�x,y� � 

n=0

N−1

�n�x��n�y� , �5�

where the “wave function” �n�x�� pn�x�e−V�x�/2. By using the
Christoffel-Darboux formula, the kernel is simplified to �for
the monic polynomials�

KN�x,y� =
�N�x��N−1�y� − �N�y��N−1�x�

x − y
. �6�

In general, the large N asymptotic behavior of the orthogonal
polynomials with respect to any weight function character-
ized by V�x��x
, 
�1, have behavior qualitatively similar
to the Hermite polynomials,12 such that the asymptotic be-
havior of the wave function in the N→� limit is given by

�2N�u� � cos�
u�;�2N−1�v� � sin�
v� , �7�

where u and v are scaling variables, namely,
du�K��x ,x�dx and dv�K��y ,y�dy such that the mean

density K̄��u ,u� is unity in the N→� limit. In this limit, the
two-level kernel in the scaled variables become

K̄G�s� =
sin�
s�


s
; s � �u − v� �8�

which is the celebrated sine kernel. Thus, in the framework
of orthogonal polynomial method, the universality of random
matrix ensembles is traced to the similarity of the scaling
behavior in the large N limit of the polynomials correspond-
ing to the probability measure under consideration.12 In par-
ticular, the orthogonal polynomials corresponding to all
“Freud-type” weight functions19 e−V�x�, with monotonically
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increasing polynomial V�x�, share similar asymptotic behav-
ior in the large N limit. Thus, they give rise to the same
correlations as the Gaussian ensembles.

III. � ENSEMBLES

The generic choice of the confining potential V�x� that
gives asymptotic logarithmic behavior is V�x�=A�ln x�1+�.
However, it has an unphysical singularity at the origin so that
we need to regularize it in a certain way. One possible way to
do it is choosing, e.g., V�x�=A�ln�1+x��1+� but there are a
variety of other forms that differ by the regularization behav-
ior in the vicinity of origin, which will not change the char-
acteristics of the � ensembles. For our study, we particularly
choose the following form of potential:16

V�x� =
1

�
�sinh−1 x�1+�; � � 0, � � 0. �9�

The merit of choosing Eq. �9� is that for �=1, it coincides
with the one possible form of the weight function of the
q-RMEs �Ref. 20� so that we can compare our results with
those of q-RMEs. For the q-RMEs, the mathematical prop-
erties of the corresponding orthogonal polynomials, “the
Ismail-Masson q polynomials”15 are well known, which
leads to the two-level sinh kernel in the limit ��2
, given
by

K̄C�s� =
�

2


sin�
s�
sinh��s/2�

. �10�

As is well known, this recovers the Gaussian sine kernel in
the limit �=0.

For ��1, the corresponding orthogonal polynomials,
which we refer to as “� generalization of q polynomials”21

are known via the recurrence relation of the orthogonal poly-
nomial, i.e.,

x�n�x� = �n+1�x� + Sn�n�x� + Rn�n−1�x� , �11�

where Sn and Rn are real. For symmetric weight functions all
Sn are zero and the polynomials are determined by the coef-
ficient Rn. The following shows comparison among the Her-
mite polynomials, q polynomials and the � generalization of
q polynomials:

Rn � n Hermite polynomials, �12�

� e�n q polynomials, �13�

� e�n1/�
� generalization of q polynomials. �14�

We can see clear distinction between Rn of the Hermite poly-
nomials �linear in n� and that of the � generalization of q
polynomials �exponential in n1/�� which reduces to that of q
polynomials for �=1. The significance of Rn is that it deter-
mines the upper bound of the spectral density and thus the
scaling behavior of the bulk of the spectrum in the large N
limit.14,15 For example, for the Gaussian ensembles charac-
terized by V�x�=x2 �Hermite polynomials�, the upper bound
of the spectral density is �N in the large N limit. Thus the

normalization condition of the spectral density requires the
bulk of the spectrum to grow as �N as in the semicircle law.
On the other hand for the logarithmic soft-confinement po-
tentials, the spectral edge grows at an exponential rate e�n1/�

.
The bulk of the spectrum does not scale as N. For example,
for V�x�� �ln x�2, the spectral edge grows as �eN and the bulk
of the spectrum is given by ��x��1 /x which does not depend
on N.

IV. RESULTS

The calculations of the density and the cluster function
are performed based on the numerical construction22 of the �
generalization of the q polynomials. For instance, the density
��x��KN�x ,x� can be obtained by summations of products
of the wave function as in Eq. �5�. The two-level cluster
function

Y�u,v� � �K̄�u,v��2 �15�

can be obtained based on Eq. �5� with the unfolding map
u�x���xdx��x�.

A. Eigenvalue density

In Ref. 16 it was observed that the density of the � en-
sembles is given by a pure power law, e.g., ��x�= 1

x1−� . For
�=1, �=0 and for ��1 and ��1, ��0, and ��0, respec-
tively. However, careful further investigation shows that this
observation is only approximate and a more accurate form of
the eigenvalue density is given by

��x� �
�ln x��−1

x
for x 	 � , �16�

where the lower cutoff � depends on the parameters in V�x�.
For example for �=1, �=� and for ��1, � is some func-
tion of both � and �, which depends on the specific regular-
ization of V�x� at the origin.

The above form is suggested by the mean-field approach23

for ��1. The validity of this form for all ��0 can be
checked by considering the normalization condition of the
spectral density

2�
0

DN

��x�dx = N . �17�

Here the factor 2 comes from the fact that ��x� is symmetric
around origin. The upper bound DN is given by the largest
zero of the orthogonal polynomials of order N, namely,
DN��RN. As pointed out, Rn�exp�n1/��. We notice that
Ref. 24 studied the largest zeros of the orthogonal polyno-
mials to the weight function of exp�−c�ln x�m� for c�0 and
m a positive even integer and showed that the largest zero is
of order exp�n1/m−1�, which is the same behavior as the co-
efficient Rn of the � generalization of q polynomials in Eq.
�14�. Thus, our results seem to imply that the results of Ref.
24 can be extended to an arbitrary real ��0.

In order to test the validity of Eq. �16� numerically, we
assume that the density is in general given by

UNIVERSALITY OF A FAMILY OF RANDOM MATRIX… PHYSICAL REVIEW B 82, 104202 �2010�

104202-3



��x� =
f�x;��
x + �

, �18�

where f�x ;�� is a slowly varying function of x. Then x��x�
will have the form

x��x� =
x

x + �
f�x;�� , �19�

� f�x;�� x 	 � . �20�

Thus, the function f�x ;�� is identifiable in the large x	�
regime of x��x� vs x plot. Figure 1 shows the logarithmic
behavior of x��x� for ��1 ��=0.5, 0.7, 0.9, and 1� while
Fig. 2 show it for ��1 ��=1.1, 1.3, 1.5, and 1�, respectively.
For all the cases, we chose �=O�1�, which ensures the cutoff
�=O�1�.

To further investigate if f�x ;��� �ln x��−1 for large
x �x	1�, we plot ln�x��x�� vs ln ln x and fit it in the range
10�x�104. Figures 3 and 4 show the expected linear be-
havior, establishing the validity of Eq. �16�.

B. Ghost correlation peak

For �=1, the existence of a “ghost correlation peak” is
well known.12,18,25,26 The ghost peak was discussed in Ref.
26 though it was contained implicitly in the exact result of

Ref. 12. While the normal part of the two-level cluster func-
tion for the critical ensembles for uv�0 and �u−v��u is
given, in the ��2
 limit, by the sinh kernel

Yn
c�u,v� = � �

2


sin�
�u − v��

sinh��

2
�u − v���

2

�21�

there exists an anomalous part of the cluster function for
uv�0 given by

Ya
c�u,v� = � �

2


sin�
�u − v��

cosh��

2
�u + v���

2

. �22�

In fact, the presence of such long-range correlation is re-
quired by the normalization sum rule26

1 = �
−�

�

du�Yn
c�u,u�� + Ya

c�u,u��� . �23�

The deficiency of the sum rule
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FIG. 1. Eigenvalue density for ��1, namely, �=0.9��=0.75�,
0.7��=0.50�, 0.5��=0.25�, as well as 1��=0.75�.
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� � 1 − �
−�

�

duYn
c�u,u�� = �

−�

�

duYa
c�u,u�� �24�

is related to certain characteristics of the critical statistics:9

�i� the level compressibility in the number variance ��L�
within a range L and �ii� the multifractality of eigenvectors.27

In particular,

� =
d���L��

d�L�
=

d − D2

2d
, �25�

where d is the system dimension and the fractal dimension-
ality Dp determines the scaling behavior of the moments of
the inverse participation ratio via

�� ddx��n�x��2p� � L−Dp�p−1�, �26�

where �n�x� is the eigenfunction of the system under consid-
eration and the angular bracket denotes the ensemble aver-
age.

It turns out that � ensembles possess such normal/
anomalous structure for ��1 as well. Figures 5 and 6 show
the numerical evaluation of 1−Ya

��u ,v� �u�0 and v�0� for
a symmetric range around v=−u for varying � values for a
fixed � ��=0.5 in Fig. 5 and �=1.5 in Fig. 6�. As the figures

show clearly, the magnitude of the ghost peak depends on �
in a significant way; for ��1 �Fig. 5�, the peak is more
pronounced than that for �=1 and for ��1 �Fig. 6� it is the
opposite.

The observation that such long range correlation leading
to the ghost peak is preserved for all ��1 suggests that such
features are common to all logarithmic confinement poten-
tials. In other words, once the critical ensembles break the
U�N� symmetry28 of the Gaussian ensembles with the intro-
duction of the parameter � �or q=e−��, the � ensembles re-
main in this broken symmetry family. The fact that as �
becomes large, the ghost peak shrinks seems to imply that
the U�N� symmetry might become fully restored in the limit
of �→�. This expectation seems consistent with the
asymptotic behavior of two-level correlation in the limit of
�→� that will be shown later in Sec. IV.

The � ensembles are all “critical” in the sense that the
normal part of the two-level kernel violates the sum rule that
can be associated with the characteristics of the critical sta-
tistics such as level compressibility and multifractality. In
particular, the fact that the violation of the sum rule is con-
trolled by the parameter �, e.g., 0������1 is intriguing. As
mentioned above, � seems related to the degree of the U�N�
symmetry breaking and thus, indicative of the nontrivial
character of the eigenvector correlations, namely, the multi-
fractal dimensionality as can be seen immediately from Eq.
�25� and the �-dependent sum-rule deficiency. In this regard,
the study of the dimensional dependence of the critical sta-
tistics will be important to further understand the role of the
parameter � since the multifractal dimension of the eigen-
vector correlations at the critical states is dependent on the
dimensionality of the system.29

Figures 7 and 8 show the comparison between the normal
part of cluster function for ��1 and that for �=1 as well as
that of the Gaussian ensemble. We note that the nodes of the
cluster functions occur at integer values on the x axis for all
� values as well as the Gaussian case, which is the indication
of the semiclassical behavior. The peak height and position
between the nodes gradually decrease and shifts as � de-
crease for a given � value ��=0.5 in Fig. 7 and �=1.5 in Fig.
8�, which is already shown in Ref. 16.
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C. Identification of two-level kernel

As mentioned before, for the logarithmic soft-
confinement potential, the eigenvalue density is a nontrival
function that does not depend on N as shown in Sec. I. The
deformation from the Gaussian universality, the “sine ker-
nel,” is expected due to the nontrivial unfolding
procedure.23,30 In the following, we will identify the two-
level kernel of the � ensembles in the semiclassical regime
and show that the proposed form is in good agreement with
the numerically obtained cluster function �thus the two-level
kernel�.

In the semiclassical regime ���2
 for the critical en-
sembles corresponding to �=1�, the kernel for an arbitrary
weight function can be written as23,31

K̄�u,v� �
sin�
�u − v��
x�u� − y�v�

. �27�

For example, for the critical ensembles ��=1� the unfolding
variable, in which the density becomes uniform and unity, is
given by

u� = u − u0 � �
x0

x c

t1dt = ln x/x0. �28�

This leads to x=x0eu�/c and hence to the sinh kernel. In a
similar manner, we define the unfolding variable for the �
ensembles as

u� = u − u0 � �
x0

x c�ln t��−1

t
dt =

c

�
��ln x�� − �ln x0��� ,

�29�

where u0=�0
x0��x�dx and x0	�, the cutoff of the density

near the origin. The constant c���x=0�. Note that ��x=0� is
a function of the parameters that do not depend on N. For the
critical ensembles, ��0�= 1

� and for the � ensembles,
��0�=g�� ,��, where g is some function of � and �. Rewrit-
ing the original variable x in terms of the unfolding variable,
we obtain

x = exp����u� + a�1/�� , �30�

where ���� �

c �1/� and the a� c
� �ln x0��. For �=1, it reduces

to the unfolding for critical ensembles. Equation �27� then
suggests the two-level kernel for � ensembles to be of the
form

K̄n�ũ, ṽ� =
�

2


sin�
�ũ − ṽ��

sinh��

2
�ũ − ṽ�� , �31�

where we have defined ũ=u�+a and ṽ=v�+a, and the pa-
rameter � is introduced to satisfy the condition that

��ũ�= K̄n
��ũ , ũ�=1. It then follows that

� = ��ũ, ṽ� � ��
ũ1/� − ṽ1/�

ũ − ṽ
. �32�

Thus we arrive at the regular component of the two-level
kernel of the � ensembles

K̄n
��ũ, ṽ� =

��ũ, ṽ�
2


sin�
�ũ − ṽ��

sinh���ũ, ṽ�
2

�ũ − ṽ�� ; ũṽ � 0 �33�

while the anomalous component of the two-level kernel of
the � ensembles is given by

K̄a
��ũ, ṽ� =

��ũ, ṽ�
2


sin�
�ũ − ṽ��

cosh���ũ, ṽ�
2

�ũ + ṽ�� ; ũṽ � 0.

�34�

We note that the kernel Eq. �33� reduces to the
well-known sinh kernel for �=1, where ��ũ , ṽ�→��=�. In
general, it is not translationally invariant, e.g., for
�=0.5,��ũ , ṽ�=���ũ+ ṽ� and for �=2.0,��ũ , ṽ�= ��

�ũ+�ṽ
.

However, if we choose ṽ to be a fixed value, i.e.,
ṽ=v−u0+a=a, which is the same as choosing v=u0, then
ũ=u−u0+a=u−v+a�s+a. In this way, the function ��ũ , ṽ�
and g�ũ , ṽ� can be written in terms of a difference variable
s�u−v= ũ− ṽ alone with a constant ṽ=a that serves as a
fixed reference point

��s + a,a� � ��s,a� = ��
�s + a�1/� − a1/�

s
. �35�

Then

K̄n
��s,a� =

��s,a�
2


sin�
s�

sinh���s,a�
2

s� . �36�

Figures 9 and 10 show the fitting results with the cluster
function corresponding to the kernel Eq. �36� for different �
values. They show a fit with the numerically obtained two-
level kernel, from the � generalization of the q polynomials
and Eq. �5�, with fit values ����=0.5 and a�2 for ��1
�Fig. 9� and ����=1.5 and a�2 for ��1 �Fig. 10�. In
Figs. 11 and 12, we show that in similar range of the param-
eters, the anomalous components of the kernel also agree
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FIG. 8. Normal component of the cluster function for � en-
sembles for ��1��=1.50�.
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very well with the proposed form of the kernel Eq. �34�.

D. Universality

In the following, we will discuss asymptotic behavior of
the two-level kernel of the � ensembles by further examining
Eq. �36�. First, we note that

��s,a� � s1/�−1 for s 	 a �37�

leads to

K̄n�s,a� � s1/�−1e−s1/�
for s 	 a . �38�

Looking at the � dependence, we observe that

K̄n�s,a� � e−s�
for � → 0,

� e−s for � = 1,

� s−1 for � → � . �39�

Thus, in the limit �→�, we get back the well-known decay
of the Gaussian ensembles �WD universality�. This is consis-
tent with the fact that the magnitude of the ghost correlation
peaks become smaller as � increases, presumably disappear-
ing in the Gaussian limit of very large �. For �→0 limit, the
asymptotic tail is given by the infinitely fast exponential de-
cay, which suppresses the eigenvalue correlations, thereby
leading to uncorrelated Poisson-type behavior �Poisson sta-
tistics�. In between these limits, the large s behavior is gov-
erned by e−s1/�

, which is a feature of � ensembles.
In a similar fashion, we can study the two-level density-

density correlation function

R�u,v� � ��u − v� − Y�u,v� . �40�

In terms of the difference variable s=u−v, the two-level cor-
relation function for the � ensembles can be written as
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FIG. 9. Fitting results for normal component of the cluster func-
tion for � ensembles for ��1��=0.50�. The lines are obtained from
Eq. �5� using the � generalization of the q polynomials while the
points are obtained from the analytic form of the cluster function
given by Eq. �33�.
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FIG. 10. Fitting results for normal component of the cluster
function for � ensembles for ��1��=1.50�. The lines are obtained
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the points are obtained from the analytic form of the cluster func-
tion given by Eq. �33�.
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R��s� � ��s� − Y��s� . �41�

For s�a, R��s��s2 for all values of �, which is an expected
feature due to the unitary symmetry of the ensembles. For
large s	a, the results are simply obtained from Eq. �39�

R��s,a� � e−s�
for � → 0,

� e−s for � = 1,

� s−2 for � → � . �42�

We can see that the asymptotic behavior of the two-level
correlation function interpolates that of Gaussian ensembles
for �→� limit and uncorrelated Poisson-type behavior for
�→0 limit. This suggests that � ensembles belong to the
critical ensembles characterized by � which determines the
rate of asymptotic exponential decay of the two-level kernel.

E. Number variance

As an example of the spectral measures obtained from the
two-level kernel, the evaluation of the number variance ��L�
within a range L is shown in Fig. 13. It clearly shows that for
all values of �, the number variance is linear in L for large L.
As � becomes smaller, the number variance shifts toward the
uncorrelated Poisson distribution. This is consistent with the
fact that deficiency of sum rule ���� increases as � decreases
as shown in Sec. II since the slope of number variance is
directly related to the deficiency of the sum rule

���� =
d���L��

d�L�
. �43�

V. SUMMARY AND DISCUSSION

In this work, we further study an invariant class of ran-
dom matrix ensembles characterized by the asymptotic loga-
rithmic soft-confinement potentials introduced in Ref. 16
which we refer to as the � ensembles. As a first step, we
carefully reinvestigate the spectral density of the � en-
sembles and show that instead of a �-dependent power law
in a restricted regime, the spectral density is given more

accurately by a power law of the form ��x�� �ln x��−1 /x.
This result is suggested by the mean-field approach and it
can be checked by the normalization condition of the spectral
density, the edge of which is determined by the coefficient Rn
of the � generalization of the q polynomials.

Second, we show that the two-level kernel of the � en-
sembles has normal/anomalous structure, which is character-
istic of the critical ensembles. The anomalous component
arising due to the sum rule violation is dependent on the
parameter � for a given value of � which is kept O�1� in the
numerics; as the value of the � decreases, the deficiency of
the sum rule becomes larger.

Third, we identify the normal and anomalous components
of the two-level kernel in the semiclassical regime, which are
given by Eqs. �33� and �34� that reduce to those of the criti-
cal ensembles for �=1. Further, we show that the two-level
kernel of the � ensembles exhibits a distinct universal
asymptotic behavior, shown by Eqs. �39�, which include the
Gaussian ensembles ��→� limit�, the critical ensembles
��=1� as well as the uncorrelated Poisson-type behavior
��→0 limit�. In particular, the large s behavior of the two-
level kernel is governed by exp�−s1/��, which is the charac-
teristic feature of the � ensembles. It is expected that the
asymptotic tail of the spacing distribution is also given by a
similar exponential form.

Lastly, we show that the number variance is linear in L for
large L. The slope of number variance or the level compress-
ibility is dependent on the parameter �. As � decreases, the
slope increases, which is consistent with the fact that
anomaly or the deficiency of the sum rule increases as �
decreases.

All the features of the � ensembles shown above such as
the ghost peak, the deficiency of the sum rule, the finite
compressibility as well as the asymptotic exponential decay
of the kernel seem to suggest that the � ensembles belong to
the critical ensembles characterized by �. Therefore, it is
expected that the � ensembles would be relevant to the de-
scription of the critical states of the localization-
delocalization problems in disordered systems. Since the
critical level statistics are universal, depending only on the
critical exponent and the dimensionality of system for a
given symmetry class, it is conceivable that the parameter �
can be associated with these parameters. In particular, the
study of the dimensional dependence of the critical statistics
is interesting since the parameters of the critical level statis-
tics such as the critical exponent and the multifractal dimen-
sion are dependent on the spatial dimension of the system.

At the same time, it is also interesting to see if � en-
sembles are also applicable in the study of quantum chaos.
Recently the critical statistics has been found relevant in
some cases of quantum chaos as well.32 It turns out that the
two level kernel of chaotic systems with logarithmic
singularity33 have the exact same form as that of the critical
ensembles.

Another important implication of the � ensembles is in
regard to the question that we posed earlier, namely, if there
is a universality of the correlations of the eigenvalues asso-
ciated with fat-tail distributions. Our results seem to suggest
that a nontrivial N dependence of two-level kernel of the
fat-tail RMEs is a generic feature within the framework of
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rotationally invariant RMT. In the �→0 limit of the � en-
sembles, � is required to be an N-dependent parameter to
have the probability measure to be normalizable, which is
the case for the free Lévy matrices. Thus, the N dependence
of the two-level kernel in this limit can be understood as a
consequence of the presence of the N-dependent parameter
in the model ensemble, which cannot be simply scaled out.

In conclusion, we show that the family of RMEs with the
asymptotic logarithmic soft-confinement potentials charac-
terized by �, called the “� ensembles,” connects the WD
universality ��→��, the uncorrelated Poisson-type behavior

��→0� and exhibit a critical behavior for all the intermediate
� value �0����� in the semiclassical regime. We expect
that further study of the � ensembles and the � generalization
of q polynomials will lead to a deeper understanding of the
universality of random matrix ensembles in general.
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